If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2+16000q-1000000=0
a = 2; b = 16000; c = -1000000;
Δ = b2-4ac
Δ = 160002-4·2·(-1000000)
Δ = 264000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{264000000}=\sqrt{4000000*66}=\sqrt{4000000}*\sqrt{66}=2000\sqrt{66}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16000)-2000\sqrt{66}}{2*2}=\frac{-16000-2000\sqrt{66}}{4} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16000)+2000\sqrt{66}}{2*2}=\frac{-16000+2000\sqrt{66}}{4} $
| 18x=1800 | | 10(3x+2)=1680 | | 2(g+2)=-8 | | 1.2x+5=10 | | 3(3w+6)/4=-1 | | (-8,-2);m=5 | | 5x+8x=128 | | 69x+111=180 | | X²-4x-20=-x-2 | | 2b-3=2b+9 | | 9/6=d/2 | | 105+25x=180 | | 8x+5x=243 | | 7(3x-4)=45.5* | | 243+5x=8 | | (9x+4)=(4x+1) | | 3.3(2x-6)=18* | | K+24=i4 | | 6n-3n+4n=37 | | 3(2•x-5)=39 | | g+2=29 | | g-3=95 | | −8t+2=−14 | | 4x+3=x+x+7+x+7 | | x-5+3x+1=90 | | (4x=2)° | | -7e=-42 | | 8+2(p+1)=30* | | y+1=2(y+3)-3(y-1) | | x^2-3x-28=30 | | 4(2x+1)=3(3x-3) | | 3x^2-11x+20=0 |